
Introduction to Regular
Expressions

Just Enough to Make You Dangerous

Or: Just Enough To Google It Later

Slides online at

CITx 2017, Nathan P. Stien

nathanic.org/regex

http://nathanic.org/regex

What are Regular Expressions?

They are a language for querying bodies of text.

Well, more like a family of languages.

The Plan
Teach you some basics
Show you some improvized demos
Give you some applications
Answer you some questions at any time

Language
Basics

Literals

Most characters are literals that just match
themselves.

Easier to list the NON-literals: $^*+|()[].\/

The expression CITx matches the string "CITx"
and nothing else.

Escaping with Backslash
Special chars like | become literals \|

Some non-special chars become special:

\n Newline
\t Tab
\s Any Whitespace
\d Any Digit
\b Word Break

(There are more but those are the best ones)

Alternatives

The pipe character | is the "or" operator.

this|that will match both "this" and "that"

Can be chained inde�nitely:
apples|oranges|bananas|kumquats|...

Demo

https://regex101.com/r/EEMRlm/1/

Grouping with Parentheses

th(is|at) will match both "this" and "that"

Parens also create capture groups you can refer to
in substitutions

Character Classes

gr[ae]y will match both "gray" and "grey"

[aeiou] will match any vowel, though it will never
match y

(Not even sometimes.)

[^aeiou] will match any non-vowel, including

whitespace and Emoji ☕

Character Ranges

You can express a range of possible characters:

[a-z] any lowercase
[a-zA-Z] any alpha
[^0-9] anything NOT a digit

Shorthand Character Ranges

\d [0-9] (digits)
\w [a-zA-Z0-9_] (word characters)
\s [\t\r\n\f] (space/separator characters)

There are more, but those are the main ones I use.

Anchors
Anchors allow you to reference certain parts of the

text

^ is the beginning of the line
$ is the end of the line
\b is a word boundary

Demo

https://regex101.com/r/EEMRlm/2/

Dots are Wild

. will match any character

Even !

Demo

https://regex101.com/r/crrdd9/1/

Quanti�ers
Any subexpression can be repeated some number

of times:

? occurs 0 or 1 times
* occurs 0 through ∞ times
+ occurs 1 through ∞ times
{x} occurs exactly x times
{x,} occurs x or more times
{x,y} occurs x through y times

Demo

https://regex101.com/r/3roJLQ/2

Dot Star: anything any number
of times

.* will match ANY text of ANY length

The lazy man's subexpression

Substitution
Reference capture groups with \1,\2, etc.

Replace ^The (.*)$ with \1, The

Demo

https://regex101.com/r/YoKM8c/2/

What did I not talk about?
Other Prede�ned Character Classes
Unicode Property Queries
Negative and Positive Lookahead
Lazy, Possessive, and Greedy Quanti�ers
Subquery Recursion

I almost never need that stu�.

Where Can I Use This
Stuff?

Editors with RegEx
Search/Replace

Microsoft Word & co
NotePad++
Any programmer's editor or IDE
Vim, Emacs, Sed, Grep, Ack, Ag, Awk, and pretty
much any UNIX tool
Bulk �le rename tools like rename and vidir

(Most) Form Tools
De�ne validations for form �elds in terms of regex

\(\d{3}\) \d{3}-\d{4}

But not in FormStack AFAICT :-(

SQL
UPDATE flexadmin.web_log
SET message = REGEXP_REPLACE(
 message,
 'pmt_method_exp_date: \d{4}',
 'pmt_method_exp_date: 9999'
) WHERE some_stuff = 'some other stuff'

Every Programming Language Ever

Even !

They mostly even use the same few libs like PCRE
or java.util.RegEx

Search, replace, split, parse

On the Integrations Team, we use java.util.RegEx all
the time

PeopleCode

http://peoplesoft.wikidot.com/regular-expressions

Where Shouldn't You Use
Regex?

XML parsing, because

Any su�ciently nasty job where you can't read your
own regexes after you're done

Reach for a specialized parsing lib for things like
JSON, CSV, XML, etc.!

that way lies madness

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

Bonus Slide: IRC Bot @roll
InstaParse Grammar

<command> := throw (<ws? '+' ws?> throw)* <ws*> comment?
<throw> := die | const
die := #'[0-9]*' <'d'> #'[0-9%]+'
const := #'-?[0-9]+'
comment := <#';\\s*'> #'.*$'
<ws> := #'\\s+'

