
Tony Brook & Nathan Stien

GIT TO DA REPO!
VERSION CONTROL,

GITLAB, AND ISU

August 2nd, 2016



WHAT IS VERSION CONTROL
(And why should you care?)

Shared workspace for multiple collaborators
Tracking history of documents (usually code or config)
Ability to view and restore any past version of a document
Compare changes between versions ("diffing")



WHAT IS VERSION CONTROL
(And why should you care?)

Only allow authorized changes
Who changed what?
and WHY?
Ideally note every change for future reference
Create documentation as you go



VERSION CONTROL: BASIC
CONCEPTS



COMMITS
Commits are moments in the history of your documents

where you saved.

Each commit has a timestamp, an author, a change
description, and file content.



WHAT IS "DIFFING?"

Compare two or more commits (versions of a document)
Highlight additions, deletions, changes in a line



WHAT ARE BRANCHES?

A branch is an 'alternate timeline' of versions for a set of
files.



WHAT IS MERGING?

Separate branches of development can be merged back
together



PRIMITIVE FORMS OF VERSION
CONTROL

Manual Zip / storage
Backups
Network Shares



ISSUES WITH PRIMITIVE VCS
Scalability
Poor or no tracking of who did what, when
Cannot conveniently see what changed (diffing)
Recovery is usually painful
Collaboration is hard
What's the "Master" version?"
How many copies are floating around?



MODERN VCS AT ISU



SHAREPOINT!
Allows collaboration
Track changes (who/what/when)
Built-in security



DOWNSIDES OF SHAREPOINT FROM
A CODE/CONFIG ANGLE

Poor Diff support
Cannot track  multiple versions of the same file at once
(known as branching)
Inappropriate for Programming Work



SUBVERSION
Designed natively for code and config files
Easily display the differences between any older versions
of the file ("diffing")
Supports Branching features
AT has a 12 year history of Subversion for older projects



DOWNSIDES OF SUBVERSION
Subversion doesn't have a cool web interface (Only CLI or
TortoiseSVN)
Poor Discoverability of projects (no search, etc)
Hard for non-developers to use and explore
As a result, few teams AT have used SVN (mainly web
developers & automation people)
Not set up for access control - all or nothing access



Story time!

ENTER GIT

In 2005, Linus Torvalds locked himself in his office one
weekend and emerged with git



WHY DOES AT USE GIT?
It's Fast (noticably faster than Subversion)
Local Branches (track history even if offline)
Local Repositories (no server needed at all)
Network Effects (everyone else uses it now)



HOW DOES AT USE GIT?
We use git for all custom so�ware work and some
configuration management
The Java team has adopted standard workflows for
branching and merging
Many servers use etckeeper to manage system
configuration file history



TYPICAL BRANCH & MERGE
WORKFLOW IN AT



VERSION TAGS



WHAT IS GITLAB, THEN?



WHAT IS GITLAB?
Central source code and configuration repository
Shared through all of AT (& WEB & elsewhere!)
Secured with overall and per-project access control
Searchable
Organized into teams/groups
Supports personal repositories - anyone can create their
own or "fork" existing for tinkering

















GITLAB VS. GITHUB
Why did we choose a paid repository product?

Improved Security
Local to ISU - proprietary code
Auditing and Logging
Advanced features
Integration with other local tools



INTEGRATIONS, YOU SAY?
Chatroom monitor of activity - custom to AT Devs, other
integrations with Jabber and Slack available
Jenkins & GitLab Continuous Integration (CI) for unit tests
and faster deploys
YouTrack for project level issue tracking and expanded
visibility
Growing the development pipeline across campus



PITFALLS AND GOTCHAS

Image credit: https://xkcd.com/1597/



CONTINUOUS DELIVERY(?)
Future Development will aim at Automation

Code checked in
Code reviewed for basic tests with CI
Code updated in YouTrack for QA review
Approval of CI and QA will allow code to be merged into
master branch
Merging into master branch will trigger notifications for
admins to deploy
Deploys can be rolled back quickly in case of an issue
Faster turnaround!



WHERE CAN YOU LEARN MORE?
 Homepage for Git project (This must be downloaded first!) 

https://git-scm.com 

Full documentation of the entire Git project (long and dry) 

https://git-scm.com/book 

      GitHub training on Git CLI 

https://try.github.io 

     Official Git Tutorial 

https://git-scm.com/docs/gittutorial



WHERE CAN YOU LEARN MORE?
 

GitLab tutorial 

https://about.gitlab.com/2016/03/08/gitlab-tutorial-its-all-connected/ 

Official Git download site (accept no substitutes!) 

https://git-scm.com/downloads 

Additional Tools that are useful 

Atom - Git-integrated document editor: https://atom.io 

Powershell git (posh-git) - https://github.com/dahlbyk/posh-git 

GitLab blog - new features and uses: https://about.gitlab.com/blog



HOW DO I USE AT'S GITLAB?
AT's instance of GitLab is provided as a Service to the IT community of Illinois State

University. It is covered by a Service Level Expectations that the system will be

updated and running during normal business hours.

Requests for access should go through the Technology Support Center. Support is

provided AS-IS; we are not anticipating training.

Access is tied to Active Directory Logins/Email for Security Control.



QUESTIONS?
COMMENTS?
TOMATOES?


